Local Adaptation in European Firs Assessed through Extensive Sampling across Altitudinal Gradients in Southern Europe
نویسندگان
چکیده
BACKGROUND Local adaptation is a key driver of phenotypic and genetic divergence at loci responsible for adaptive traits variations in forest tree populations. Its experimental assessment requires rigorous sampling strategies such as those involving population pairs replicated across broad spatial scales. METHODS A hierarchical Bayesian model of selection (HBM) that explicitly considers both the replication of the environmental contrast and the hierarchical genetic structure among replicated study sites is introduced. Its power was assessed through simulations and compared to classical 'within-site' approaches (FDIST, BAYESCAN) and a simplified, within-site, version of the model introduced here (SBM). RESULTS HBM demonstrates that hierarchical approaches are very powerful to detect replicated patterns of adaptive divergence with low false-discovery (FDR) and false-non-discovery (FNR) rates compared to the analysis of different sites separately through within-site approaches. The hypothesis of local adaptation to altitude was further addressed by analyzing replicated Abies alba population pairs (low and high elevations) across the species' southern distribution range, where the effects of climatic selection are expected to be the strongest. For comparison, a single population pair from the closely related species A. cephalonica was also analyzed. The hierarchical model did not detect any pattern of adaptive divergence to altitude replicated in the different study sites. Instead, idiosyncratic patterns of local adaptation among sites were detected by within-site approaches. CONCLUSION Hierarchical approaches may miss idiosyncratic patterns of adaptation among sites, and we strongly recommend the use of both hierarchical (multi-site) and classical (within-site) approaches when addressing the question of adaptation across broad spatial scales.
منابع مشابه
Natural Selection Drives Altitudinal Divergence at the Albumin Locus in Deer Mice, <i>Peromyscus Maniculatus</i>
In populations that are distributed across steep environmental gradients, the potential for local adaptation is largely determined by the spatial scale of fitness variation relative to dispersal distance. Since altitudinal gradients are generally characterized by dramatic ecological transitions over relatively short linear distances, adaptive divergence across such gradients will typically requ...
متن کاملNatural selection drives altitudinal divergence at the albumin locus in deer mice, Peromyscus maniculatus.
In populations that are distributed across steep environmental gradients, the potential for local adaptation is largely determined by the spatial scale of fitness variation relative to dispersal distance. Since altitudinal gradients are generally characterized by dramatic ecological transitions over relatively short linear distances, adaptive divergence across such gradients will typically requ...
متن کاملAltitudinal Genetic Variations Among the Fagus orientalis Lipsky Populations in Iran
Nuclear simple sequence repeats (nSSRs), together with 16 different enzyme loci, were used to analyzegenetic diversity and differentiation among beech (Fagus orientalis Lipsky) populations along two altitudinalgradients in Hyrcanian forests of Iran. Both enzymes and nSSR analyses revealed a high level ofgenetic diversity in natural populations of F. orientalis. The genetic div...
متن کاملExamining the Social Basis of the Far-right Parties in Europe
Far-right parties have been increasingly spreading throughout Europe since 1980s; they have attracted the attention of many voters, especially the youth and the workers by campaigning against immigration and multiculturalism. Through an anti-establishment approach, these parties have become mainly mistrustful of the mainstream politics articulating themselves as the true voice of the people and...
متن کاملTesting for local adaptation and evolutionary potential along altitudinal gradients in rainforest Drosophila: beyond laboratory estimates.
Predicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species distribution models (SDMs) use the current relationship between environmental variation and species' abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (i) that th...
متن کامل